Penerapan Metode K-Means Clustering Untuk Analisa Penjualan Komoditas Toko Tani Indonesia
نویسندگان
چکیده
Thisreportdescribesthegroupingofagriculturalcommodities.AgriculturalCommoditiesaretheresults of farming activities that can be traded, stored and exchanged. In carrying out testing ofthis algorithm, the data used is goods at Indonesian Farmer Center shop. thisapplication, clustering using K-means algorithm. From was processedwith samples taken farmer's shop center, three types groups wereproduced. Namely low sales data, medium high data. So with this datagrouping, farm find are selling well andwhichare not. Sothatthe in warehousedo notaccumulate.
منابع مشابه
Penambahan emosi menggunakan metode manipulasi prosodi untuk sistem text to speech bahasa Indonesia
Abstrak—Text To Speech (TTS) merupakan suatu sistem yang dapat mengonversi teks dalam format suatu bahasa menjadi ucapan sesuai dengan pembacaan teks dalam bahasa yang digunakan. Fokus penelitian yaitu suatu konsep pengucapan natural, dengan usaha “memanusiakan” pelafalan sintesa suara sistem Text To Speech yang dihasilkan. Kebutuhan utama yang digunakan untuk sistem Text To Speech dalam peneli...
متن کاملPerancangan teknologi cloud untuk penjualan online kain songket Palembang
Cloud Computing is a paradigm in which information is permanently stored in servers on the Internet and temporarily stored on the user's computer (client) including the desktop. This study aims to design an online sales application based cloud computing technology to help the artisans Palembang songket and do not rule out the possibility for other small medium enterprises (SMEs) to manage asset...
متن کاملPersistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm
Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...
متن کاملAdaptive K-Means Clustering
Clustering is used to organize data for efficient retrieval. One of the problems in clustering is the identification of clusters in given data. A popular technique for clustering is based on K-means such that the data is partitioned into K clusters. In this method, the number of clusters is predefined and the technique is highly dependent on the initial identification of elements that represent...
متن کاملConstrained K-Means Clustering
We consider practical methods for adding constraints to the K-Means clustering algorithm in order to avoid local solutions with empty clusters or clusters having very few points. We often observe this phenomena when applying K-Means to datasets where the number of dimensions is n 10 and the number of desired clusters is k 20. We propose explicitly adding k constraints to the underlying clusteri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: KERNEL
سال: 2023
ISSN: ['2774-4345']
DOI: https://doi.org/10.31284/j.kernel.2022.v3i2.4076